Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 87(4): 984-993, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38587271

RESUMO

A chemical investigation of the hydrophilic fraction of a cultured Nodularia sp. (NIES-3585) afforded six new cyclic lipopeptides, noducyclamides A1-A4 (1-4) containing 10 amino acid residues and dodecapeptides noducyclamides B1 and B2 (5 and 6). The planar structures of these lipopeptides were elucidated based on the combination of HRMS and 1D and 2D NMR spectroscopic data analyses. These peptides are structurally analogous to laxaphycins and contain the nonproteinogenic amino acids 3-hydroxyvaline and 3-hydroxyleucine and a ß-amino decanoic acid residue. The absolute configurations of the noducyclamides (1-6) were determined by acid hydrolysis, followed by advanced Marfey's analysis. Noducyclamide B1 (5) showed cytotoxic activities against MCF7 breast cancer cell lines with an IC50 value of 3.0 µg/mL (2.2 µM).


Assuntos
Cianobactérias , Peptídeos Cíclicos , Humanos , Estrutura Molecular , Cianobactérias/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Ensaios de Seleção de Medicamentos Antitumorais , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Feminino , Ressonância Magnética Nuclear Biomolecular
2.
Appl Environ Microbiol ; 89(5): e0027223, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098943

RESUMO

Perenniporia fraxinea can colonize living trees and cause severe damage to standing hardwoods by secreting a number of carbohydrate-activate enzymes (CAZymes), unlike other well-studied Polyporales. However, significant knowledge gaps exist in understanding the detailed mechanisms for this hardwood-pathogenic fungus. To address this issue, five monokaryotic P. fraxinea strains, SS1 to SS5, were isolated from the tree species Robinia pseudoacacia, and high polysaccharide-degrading activities and the fastest growth were found for P. fraxinea SS3 among the isolates. The whole genome of P. fraxinea SS3 was sequenced, and its unique CAZyme potential for tree pathogenicity was determined in comparison to the genomes of other nonpathogenic Polyporales. These CAZyme features are well conserved in a distantly related tree pathogen, Heterobasidion annosum. Furthermore, the carbon source-dependent CAZyme secretions of P. fraxinea SS3 and a nonpathogenic and strong white-rot Polyporales member, Phanerochaete chrysosporium RP78, were compared by activity measurements and proteomic analyses. As seen in the genome comparisons, P. fraxinea SS3 exhibited higher pectin-degrading activities and higher laccase activities than P. chrysosporium RP78, which were attributed to the secretion of abundant glycoside hydrolase family 28 (GH28) pectinases and auxiliary activity family 1_1 (AA1_1) laccases, respectively. These enzymes are possibly related to fungal invasion into the tree lumens and the detoxification of tree defense substances. Additionally, P. fraxinea SS3 showed secondary cell wall degradation capabilities at the same level as that of P. chrysosporium RP78. Overall, this study suggested mechanisms for how this fungus can attack the cell walls of living trees as a serious pathogen and differs from other nonpathogenic white-rot fungi. IMPORTANCE Many studies have been done to understand the mechanisms underlying the degradation of plant cell walls of dead trees by wood decay fungi. However, little is known about how some of these fungi weaken living trees as pathogens. P. fraxinea belongs to the Polyporales, a group of strong wood decayers, and is known to aggressively attack and fell standing hardwood trees all over the world. Here, we report CAZymes potentially related to plant cell wall degradation and pathogenesis factors in a newly isolated fungus, P. fraxinea SS3, by genome sequencing in conjunction with comparative genomic and secretomic analyses. The present study provides insights into the mechanisms of the degradation of standing hardwood trees by the tree pathogen, which will contribute to the prevention of this serious tree disease.


Assuntos
Phanerochaete , Polyporales , Árvores , Proteômica , Genoma Fúngico , Polyporales/metabolismo , Genômica , Phanerochaete/genética
3.
J Nat Prod ; 85(8): 2000-2005, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35948062

RESUMO

Chemical investigation of the cyanobacterium Dolichospermum sp. NIES-1697 afforded nostosin G (1), a linear tripeptide, spiroidesin B (2), and two known compounds, anabaenopeptins I (3) and J (4). Planar structures and absolute configurations for 1 and 2 were determined by 2D NMR, HRMS, Marfey's methodology, chiral-phase HPLC, and enzymatic degradation. Nostosin G (1) is a unique example of a linear peptide containing three subunits, 4-hydroxyphenyllactic acid (Hpla), homotyrosine (Hty), and argininal, with potent trypsin inhibitory properties. The biosynthetic gene clusters for nostosin G (1) and spiroidesin B (2) were investigated based on the genome sequence of Dolichospermum sp. NIES-1697.


Assuntos
Cianobactérias , Cianobactérias/química , Lipopeptídeos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Tripsina , Tirosina/análogos & derivados
4.
J Nat Prod ; 83(6): 1925-1930, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32432877

RESUMO

Chemical investigation of the organic extract from Moorea bouillonii, collected in Sabah, Malaysia, led to the isolation of three new chlorinated fatty acid amides, columbamides F (1), G (2), and H (3). The planar structures of 1-3 were established by a combination of mass spectrometric and NMR spectroscopic analyses. The absolute configuration of 1 was determined by Marfey's analysis of its hydrolysate and chiral-phase HPLC analysis after conversion and esterification with Ohrui's acid, (1S,2S)-2-(anthracene-2,3-dicarboximido)cyclohexanecarboxylic acid. Compound 1 showed biosurfactant activity by an oil displacement assay. Related known fatty acid amides columbamide D and serinolamide C exhibited biosurfactant activity with critical micelle concentrations of about 0.34 and 0.78 mM, respectively.


Assuntos
Cianobactérias/química , Tensoativos/química , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Ácidos Graxos/química , Espectroscopia de Ressonância Magnética , Malásia , Micelas , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Óleos/química , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...